Concentration Photovoltaic / Thermal (CPV/T): Next Stop for Solar Power Generations

Dr. Wei ZHOU (周 偉)

Mar 22, 2013

香港應用科技研究院有限公司 Hong Kong Applied Science and Technology Research Institute Company Limited

ASTRI - Early Guiding Forces

The late Prof. Chang-Lin Tien Chancellor of U.C. Berkeley

Prof. Charles Kao 2009 Nobel Laureate in Physics Vice Chancellor of Chinese U. of HK

5 Research & Development Centres in 2006

Automotive

parts &

accessory systems

5 R&D Centres

Nanotech & advanced materials

ASTR

Logistics and supply chain management

Research Focus

ASTRI's R&D efforts traverse <u>six</u> main technological areas:

- **Communications Technologies (CT)**
- □ Enterprise & Consumer Electronics (ECE)
- □ Integrated Circuit Design (ICD)
- □ Material & Packaging Technologies (MPT)
- □ Bio-Medical Electronics (BME)
- **Exploratory Research Laboratory (ERL, New Initiative)**

ASTRI at a Glance

- Staff:
- 2) ITF Funding:
- 3) Patent Granted:
- 4) Technology Transfer:
- 5) Spin-off:

586 (R&D - 501, Admin. - 85)
(Of R&D Staff, 54% are Master holders & 25% are PhD holders)
HK\$267 million (FY2011-12)
Over 400 since inception
Over to 400 since established
4 completed and several underway

ASTRI Science & Technology Research (Shenzhen) Co. Ltd

- Established in 2008
- ASTRI's wholly-owned subsidiary

ASTRI's Locations in HK Science Park

ASTRI is located in Hong Kong Science Park (total 6 floors in 3 buildings)

Material & Packaging Technologies

Packaging & Sensing

Intelligent Projectors

Intelligent Digital Signage

3D IC, Power Packaging, SiP for IoT

□ 120 R&D staff

□ 180 contracts with

110 companies, **1** spin-off (2010)

400 patents filed, 200 granted

□ 25 technology awards

Healthcare Electronics

Compact Camera Modules

CPV/T

Green Technology

Li-ion Battery Anode

Different Photovoltaic System

- CPV is the least well known of the solar technologies
- Each technology has strengths and weaknesses and has a place in the market
- 8 ASTRI Proprietary

Improvements in Solar Cell Efficiencies

ASTRI

Silicon Cells vs. III-V Multi-junction Cells

Multi Junction Solar Cells Operate at Higher Efficiency:

Employs Three Compound Semiconductor Solar Cells in Series. Each cell is tuned to absorb a different color of light.

Use high-efficient Cells: III-V Multi-junction Cells!

Efficiency Mainly Boosted by: Number of junctions + Spectral matching + Concentrated light

What is CPV ?

Saving cost by focusing the sunlight onto solar cells through an optical device that is less costly than the solar cells.

Reflective optical device

Why CPV: High Efficiency

Conversion efficiency improves under concentrated illumination

Classification		Material	Lab		Mass Production	
			Cell Eff.	Module Eff.	Cell Eff.	Module Eff.
Silicon	Crystalline	Mono-Si	25.0	21.4	17-19	11-14
		Multi-Si	20.4	18.2	13-15	10-12
	Amorphous	a-Si	19.6		<10	
Multi-junction (3J)			43.5		37-40	21~26

High Efficiency

Why CPV: Low Energy Payback Time

Lens concentrates solar flux from 500 to 1,200 times

For a CPV module with 1000 sun and 25% eff., producing 1W energy, requires more than 1500 times less cell surface than by Si module without concentration.

Different Optical Designs

Flat Fresnel lens

Fresnel Dome lens

TIR Fresnel lens

Free-form SOE

Cassegrian two-mirrors

Secondary Optical Elements

In CPV module, Secondary Optical Element (SOE) was used to increase optical angle tolerance and improve irradiance uniformity on the solar cells surface.

Cone (green) and pyramid (red), parabolic (yellow), dome A (blue), dome B (orange).

Irradiance Uniformity was improved

Classic non-imaging

secondary optical

Aims of solar tracking

CPV use only DNI because the limited acceptance angle
 They must follow the sun position in sky;
 Static concentrators, with G < 5X can avoid tracking;
 Using two axis tracking with flat panel allows 40% production increase.

For Flat module applications

Errors of several degrees do not cause problem; Designing aim: Survival to wind.

For CPV arrays

Even one degree error can reduce drastically the power output;

Not only the pointing to sun is important, but all receiving components are aligned to receive the same irradiance.

Designing aim: stiffness. More stiffness uses currently ask more steel.

CPV Applications

Roof Type CPV

Implementation of 30kW CPV Power Plant

Foundation

> Module assembly

Carry-in

Installation

Suitable Regions for CPV Plants

CPV technology is ideally suited for high solar resource regions around the globe.

Performing well even in high temperatures (Lower Temperature coefficient, only 1/5 of conventional Si based PV modules).

ASTRI's Way to High Eff. CPV Module

Novel Optics Design + Solar Cell Package = High Eff. CPV Module

Low Thermal Resistance

- Novel MCPCB packaging design;
- Void free solar cell soldering;
- Lead frame wire bonding.

Integrated CPV Module

- Efficiency: >25%;
- Slim form factor (Half of Fresnel lens design).

Reflective & Wave guide

- High optical Eff.: >85%;
- High reliability: Glass;
- High concentration: 500X & 1000X;
- High angle tolerance: +/-1.2°.

Characteristics of ASTRI' CPV Module

Golden Prize on SNEC 2012

Exhibition booth on SNEC 2012

High Efficiency

Module Effi.: ~25% (Twice the Si module)

High Concentration

Concentration Ratio: 500X & 1000X

- □ High Angle Tolerance
 - **±1.2**^o (Lower requirement for tracking)
- Slim Form Factor

Half of Fresnel lens design

□ Long-term Stability

Glass material, green and stable

3 US & 3 CN patents filed

Concentrating Photovoltaic (CPV) System

With Hong Kong Science Park in Phase III

With a Hong Kong Government Department

• Key features:

Rated power: 1kW ~25% efficiency (Twice the Si approach) 500x high concentration ratio Long term stability (All glass design)

Competition Analysis - CPV

We Offer highest concentration (1000X) CPV solution

- with largest angle tolerance (low requirement for sun tracker);
- > and thin form factor (40% of Fresnel lens design).

Company	Concentrix	SolFocus	Amonix	Emcore	ASTRI	
Country	German	USA	USA	USA	Hong Kong	
Optics	Fresnel Lens	Reflector + SOE	Fresnel Lens + SOE	Fresnel Lens + SOE	Reflector + Wave-guide	
Tolerance	± 0.6 °	±1°	~ ±0.5°	± 0.7 °	±1.2°	н
Concentration	500 X	625 X	500 X	1000X	1000X	н
Solar Cell Size	Ø3mm	10*10mm	10*10mm	10*10mm	10*10mm	
Thickness	102 mm	100 mm	>400mm	640 mm	250 mm	60

Highest! Highest!

60% less!

Concentrating Photovoltaic & Thermal (CPV/T)

Based on concentration technology, sunlight is concentrated onto high efficiency solar cell for power generations, the waste heat from concentrated sunlight will be collected for hot water productions.

Competition Analysis – CPV/T

We offer 70% Energy Efficiency (Half roof area):

- > 25% Electricity + 45% Hot Water;
- Concentration optics: 1000X for PV, 2000X for thermal;
- Slim Form Factor: ~1/3 less structure materials.

	Hybrid System	Integrated PV/T	Conventional CPV/T	ASTRI's CPV/T	
Solar Cell Type	Silicon based solar cell			Concentration cell (Triple-junction)	
Concentration Ratio	1	1	~10	1000X for PV, 2000X for thermal	
Efficiency (%)	36*	53.1	62.5	70	Highest!
System cost ** (USD)	1610	1520	1481	1207	>25% loss
Payback Period (Year) w/o gov. subsidies	5.2	5	4.9	4.0	2J /0 1833
Roof Area Needed (m ²)	11	~ 8	~ 7	4.7	50% less!
* 1:1 area for PV and thermal;			5		•

 * 1:1 area for PV and thermal;
 ** Same energy output. 4kWh/day energy for Photovoltaic,
 and7.2kWh/day energy for solar thermal. in Hong Kong.
 25 ASTRI Confidential

Market Size and Trend

□ Market Size

- Solar Thermal: China account for 47% of worldwide 245GW (~50billion USD) market;
- CPV: Installed ~600MW (~1.2billion USD) CPV modules, dominated by few players: Solfocus, Emcore, Amnix, etc.

Global CPV Installations (MW)

□ Market Trend

Growth towards self-sustained building energy solution.

Patent Portfolio

Module Performance

- □ High Efficiency: ~25% (Twice the Si module);
- **500X & 1000X** Concentration;

- □ ±1.2^o High Angle Tolerance;
- Slim Form Factor: Half of Fresnel lens design;
- □ Long-term Stability: All glass

Target Market Segments (CPV/T)

Stage I: Commercial Buildings

- Hotel (>20,000 in China), factory building;
- Release pressure of electricity quota;
- Hot water for shower, space heating.

- ~100 hotel rooms;
- ~150kWh power for public lighting (LED) /day;

30kW CPV/T system generate:

- 120~210kWh power & 6~10m³ hot water (60°C) every day in China;
- Power cover all public lighting;
- Hot water satisfy showing for all rooms.

Stage II: Residential buildings

- Residential community in China;
- House.

1kW CPV/T system generate:

- 4~7kWh power & 7~12kWh hot water every day in China;
- Cover all energy demand (LED lighting, TV, digital devices and showing) of the house except air conditioning.

Business Model – Spin Off Company

- Develop strategic relationships with EMC (Energy Management Contract) & EPC (Engineering, Procurement & Construction)
- Use direct technical sales force to target self-sustained building energy solution segments (Commercial, Factory Buildings, etc.)
- Build a comprehensive patent portfolio
- Seeking for Government subsidies, such as Golden Sun Project and local government support.

End of Presentation

Thank you. Questions are welcome.

Our corporate website: www.astri.org

or Contact us: Dr. ZHOU Wei Tel: (+852) 3406 0329 Email: weizhou@astri.org

